焊台厂家
免费服务热线

Free service

hotline

010-00000000
焊台厂家
热门搜索:
行业资讯
当前位置:首页 > 行业资讯

生活污水收集处理设施《资讯》

发布时间:2020-08-20 17:48:17 阅读: 来源:焊台厂家

生活污水收集处理设施

核心提示:生活污水收集处理设施,设备的工艺:AO工艺、MBR工艺、SBR工艺、CASS工艺。我们的设备工艺精湛、高效处理、真材实料、持久耐用、安全可靠。生活污水收集处理设施

试验对比了CA+B、CA+PC、CA+B+PC材料去除染料及高COD的能力(图 4).从图 4a可以看出,在60 min内,3种材料对染料的去除效率都较高,这主要是由于材料的吸附作用.随着时间的延长,脱色速率减小,反应8 h后,CA载体、CA+B、CA+PC、CA+B+PC对染料的去除率分别为20%、68%、92%和94%.CA+B在前8 h染料去除率低可能是因为细菌刚进入一个新的环境,需要一定的适应期;CA+PC和CA+B+PC的染料去除率也几乎一致.相应各材料的COD去除能力随时间变化如图 4b所示.CA+B+PC中剩余COD仅为200 mg · L-1左右,远小于CA+PC反应中的剩余COD,而CA+B的剩余COD仅次于CA+B+PC.  继续进行高COD的模拟印染废水的降解试验,收集反应96 h后剩余COD的数据并计算相应COD的去除率(图 5).由图 5可见,CA+B、CA+PC和CA+B+PC的COD去除率分别为13.0%、42.9%、84.7%.CA+PC与CA+B+PC对COD去除率的不同在于光合细菌的作用.光催化剂产生的自由基由于受到模拟废水中加入的NaHCO3、NH4Cl等的影响及氧气的限制,并不能完全矿化反应体系中的有机物,累积中间产物使得COD去除率较低(Konstantinou et al., 2004;Guillard et al., 2003).相反地,在光催化结合微生物反应体系中,染料随光催化降解产生的中间产物和可生化降解的葡萄糖一起进入复合材料内部,迅速被光合细菌降解、矿化

分别对CA+B、CA+PC、CA+B+PC降解84 h后的产物及配制的原始染料废水进行紫外-可见全波长扫描,结果见图 6.图中原始染料的全波长扫描图中活性艳红X-3B染料的几个典型特征峰都有出现,其中,染料所具有的共轭显色体系的特征吸收峰在可见光区域内的540 nm处,染料的脱色原理就是通过氧化途径破坏其发色基团(N=N结构).在紫外区域内,苯环、萘环等难降解芳香结构的特征吸收峰分别在245、283、324 nm处(黄春梅等,2012).反应结束后,540 nm处的吸收峰消失,说明染料分子中的偶氮结构被光催化体系和微生物共同破坏了.相比反应前活性艳红X-3B的波长扫描图,各材料降解反应后产物的萘环吸收峰也消失了,该结果表明萘环结构是不稳定的,相对比较容易被氧化降解;而苯环化学结构稳定,其吸收峰一直存在,反应结束后,245 nm和283 nm处的吸收峰有一定程度的减弱.在283 nm处的苯环吸收峰中,CA+B降解反应后产物的吸收峰明显高于CA+PC和CA+B+PC反应后产物的吸收峰,其中,复合材料的吸收峰是zui小的.而在245 nm处的苯环吸收峰中,同样是CA+B+PC反应后产物的峰值zui小.说明染料分子降解过程中,光合细菌对苯环的降解能力相对较弱,而CA+B+PC发挥了光催化剂的作用,从而使得苯环的吸收峰大大减小. 在活性艳红X-3B的FT-IR光谱中(图 7),3435 cm-1处的峰为N—H和O—H的伸缩振动吸收峰,1539、1490和1454 cm-1处的峰为苯环、萘环或三嗪环的骨架振动吸收峰,1220、1172、1140和1051 cm-1处的峰为染料分子结构中R-SO3-的吸收峰,1629 cm-1对应的峰为N=N的吸收峰(Kaewsuk et al., 2010).由图可见,3种材料的降解产物中都含有O—H和N—H的吸收峰,1634 cm-1处的强吸收峰为C=O的伸缩振动峰. 模拟印染废水降解试验  以模拟印染废水为处理对象,废水水质如下:染料活性艳红X-3B浓度为50 mg · L-1,COD(葡萄糖配)约1500 mg · L-1.选用300 W的卤素灯作为光源模拟太阳光,对比CA+PC、CA+B及CA+B+PC降解染料和COD的规律.反应结束,取样进行UV-Vis(UV765,中国)、FT-IR(Nicolet iS10,美国)及GC-MS(Agilent5975,美国)分析.  3 结果与讨论(Results and discussion)3.1 样品的表观形貌和结构表征3.1.1 材料的外观  试验制备的CA+B、CA+B+PC、CA+PC材料的外观见图 1,合成的材料呈小球状,直径约为2~3 mm  3.1.2 SEM分析  图 2为海藻酸钙载体(CA)、CA+PC、CA+B、CA+B+PC的电镜扫描图.由图可见,CA载体含有很多微小的孔道(图 2a),一方面有利于微生物的附着,另一方面可以为包埋在载体内部的微生物提供生命代谢活动所需营养物质的输送通道.相比CA载体的孔道,CA+PC的孔道变得更致密,可能是由于纳米级的光催化剂分散或附着在孔道中(图 2b).而CA+B表面相对比较光滑,其表面还可以看到部分光合细菌分散在载体上(图 2c).从图 2d中可明显地看到光合细菌包埋并分布于凝胶网络结构中,由于纳米级材料几乎观测不到,因此结合图 2e可知,该载体含有C、N、O、Ti等元素,说明g-C3N4-P25光催化剂已负载到载体中.理想状态下,大部分微生物包埋于CA载体内部,由于载体的保护,微生物可免受强氧化性自由基的氧化.光催化剂均匀分散在载体中,而只有小球外表面部分光催化剂可以接受光源的激发从而产生自由基破坏难以生物降解的物质.后续将利用该复合材料同时降解染料和COD的结果来验证以上猜测.

VPN翻回国内

翻墙回国VPN

Android翻墙加速器

翻墙回国